21 research outputs found

    Accurate recovery-based upper error bounds for the extended finite element framework

    Get PDF
    This paper introduces a recovery-type error estimator yielding upper bounds of the error in energy norm for linear elastic fracture mechanics problems solved using the extended finite element method (XFEM). The paper can be considered as an extension and enhancement of a previous work in which the upper bounds of the error were developed in a FEM framework. The upper bound property requires the recovered solution to be equilibrated and continuous. The proposed technique consists of using a recovery technique, especially adapted to the XFEM framework that yields equilibrium at a local level (patch by patch). Then a postprocess based on the partition of unity concept is used to obtain continuity. The result is a very accurate but only nearly-statically admissible recovered stress field, with small equilibrium defaults introduced by the postprocess. Sharp upper bounds are obtained using a new methodology accounting for the equilibrium defaults, as demonstrated by the numerical tests

    A recovery-explicit error estimator in energy norm for linear elasticity

    Get PDF
    Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation) techniques used in commercial codes is the recovery-based error estimator. This technique produces accurate estimations of the exact error but is not designed to naturally produce upper bounds of the error in energy norm. Some attempts to remedy this situation provide bounds depending on unknown constants. Here, a new step towards obtaining error bounds from the recovery-based estimates is proposed. The idea is (1) to use a locally equilibrated recovery technique to obtain an accurate estimation of the exact error, (2) to add an explicit-type error bound of the lack of equilibrium of the recovered stresses in order to guarantee a bound of the actual error and (3) to efficiently and accurately evaluate the constants appearing in the bounding expressions, thus providing asymptotic bounds. The numerical tests with h-adaptive refinement process show that the bounding property holds even for coarse meshes, providing upper bounds in practical applications

    Real time parameter identification and solution reconstruction from experimental data using the Proper Generalized Decomposition

    Get PDF
    Some industrial processes are modelled by parametric partial differential equations. Integrating computational modelling and data assimilation into the control process requires obtaining a solution of the numerical model at the characteristic frequency of the process (real-time). This paper introduces a computational strategy allowing to efficiently exploit measurements of those industrial processes, providing the solution of the model at the required frequency. This is particularly interesting in the framework of control algorithms that rely on a model involving a set of parameters. For instance, the curing process of a composite material is modelled as a thermo-mechanical problem whose corresponding parameters describe the thermal and mechanical behaviours. In this context, the information available (measurements) is used to update the parameters of the model and to produce new values of the control variables (data assimilation). The methodology presented here is devised to ensure the possibility of having a response in real-time of the problem and therefore the capability of integrating it in the control scheme. The Proper Generalized Decomposition is used to describe the solution in the multi-parametric space. The real-time data assimilation requires a further simplification of the solution representation that better fits the data (reconstructed solution) and it provides an implicit parameter identification. Moreover, the analysis of the assimilated data sensibility with respect to the points where the measurements are taken suggests a criterion to locate the sensors

    Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

    Full text link
    In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. We explore the capabilities of a recovery technique based on an enhanced MLS fitting, which directly provides continuous interpolated fields, to obtain estimates of the error in energy norm as an alternative to the superconvergent patch recovery (SPR). Boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results show the high accuracy of the proposed error estimator

    Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection

    Full text link
    [EN] We present a novel approach to 3D structural shape optimization that leans on an Immersed Boundary Method. A boundary tracking strategy based on evaluating the intersections between a fixed Cartesian grid and the evolving geometry sorts elements as internal, external and intersected. The integration procedure used by the NURBS-Enhanced Finite Element Method accurately accounts for the nonconformity between the fixed embedding discretization and the evolving structural shape, avoiding the creation of a boundary-fitted mesh for each design iteration, yielding in very efficient mesh generation process. A Cartesian hierarchical data structure improves the efficiency of the analyzes, allowing for trivial data sharing between similar entities or for an optimal reordering of thematrices for the solution of the system of equations, among other benefits. Shape optimization requires the sufficiently accurate structural analysis of a large number of different designs, presenting the computational cost for each design as a critical issue. The information required to create 3D Cartesian h- adapted mesh for new geometries is projected from previously analyzed geometries using shape sensitivity results. Then, the refinement criterion permits one to directly build h-adapted mesh on the new designs with a specified and controlled error level. Several examples are presented to show how the techniques here proposed considerably improve the computational efficiency of the optimization process.The authors wish to thank the Spanish Ministerio de Economia y Competitividad for the financial support received through the project DPI2013-46317-R and the FPI program (BES-2011-044080), and the Generalitat Valenciana through the project PROMETEO/2016/007.Marco, O.; Ródenas, J.; Albelda Vitoria, J.; Nadal, E.; Tur Valiente, M. (2017). Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection. Structural and Multidisciplinary Optimization. 1-21. https://doi.org/10.1007/s00158-017-1875-1S121MATLAB version 8.3.0.532 (R2014a) (2014) Documentation. The Mathworks, Inc., Natick, MassachusettsAbel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3):464–467Amestoy P, Davis T, Duff I (1996) An approximate minimum degree ordering algorithm. SIAM J Matrix Anal Appl 17(4):886–905Barth W, Stürzlinger W (1993) Efficient ray tracing for Bezier and B-spline surfaces. Comput Graph 17 (4):423–430Bennett J A, Botkin M E (1985) Structural shape optimization with geometric problem description and adaptive mesh refinement. AIAA J 23(3):459–464Braibant V, Fleury C (1984) Shape optimal design using b-splines. Comput Methods Appl Mech Eng 44 (3):247–267Bugeda G, Oliver J (1993) A general methodology for structural shape optimization problems using automatic adaptive remeshing. Int J Numer Methods Eng 36(18):3161–3185Bugeda G, Ródenas J J, Oñate E (2008) An integration of a low cost adaptive remeshing strategy in the solution of structural shape optimization problems using evolutionary methods. Comput Struct 86(13–14):1563–1578Chang K, Choi K K (1992) A geometry-based parameterization method for shape design of elastic solids. Mech Struct Mach 20(2):215–252Cho S, Ha S H (2009) Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct Multidiscip Optim 38(1):53–70Belegundu D, Zhang YMS, Salagame R (1991) The natural approach for shape optimization with mesh distortion control. Tech. rep., Penn State UniversityDavis T A, Gilbert J R, Larimore S, Ng E (2004) An approximate column minimum degree ordering algorithm. ACM Trans Math Softw 30(3):353–376Doctor L J, Torborg J G (1981) Display techniques for octree-encoded objects. IEEE Comput Graph Appl 1(3):29–38Dunning P D, Kim H A, Mullineux G (2011) Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization. Finite Elem Anal Des 47(8):933–941Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45-48):3768–3782Escobar J M, Montenegro R, Rodríguez E, Cascón J M (2014) The meccano method for isogeometric solid modeling and applications. Eng Comput 30(3):331–343Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. Int J Numer Methods Eng 43(6):997–1016Fries T P, Omerović S (2016) Higher-order accurate integration of implicit geometries. Int J Numer Methods Eng 106(5):323–371Fuenmayor F J, Oliver J L (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element mehod. Int J Numer Methods Eng 39(23):4039–4061Fuenmayor F J, Oliver J L, Ródenas J J (1997) Extension of the Zienkiewicz-Zhu error estimator to shape sensitivity analysis. Int J Numer Methods Eng 40(8):1413–1433García-Ruíz M J, Steven G P (1999) Fixed grid finite elements in elasticity problems. Eng Comput 16 (2):145–164Gill P, Murray W, Saunders M, Wright M (1984) Procedures for optimization problems with a mixture of bounds and general linear constraints. ACM Trans Math Software 10:282–298González-Estrada O A, Nadal E, Ródenas J J, Kerfriden P, Bordas S P A, Fuenmayor F J (2014) Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Comput Mech 53(5):957–976Ha S H, Choi K K, Cho S (2010) Numerical method for shape optimization using T-spline based isogeometric method. Struct Multidiscip Optim 42(3):417–428Haftka R T, Grandhi R V (1986) Structural shape optimization: A survey. Comput Methods Appl Mech Eng 57(1):91–106Haslinger J, Jedelsky D (1996) Genetic algorithms and fictitious domain based approaches in shape optimization. Struc Optim 12:257–264Hughes T J R, Cottrell J A, Bazilevs Y (2005) Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement. Comput Methods Appl Mech Eng 194:4135–4195Jackins C L, Tanimoto S L (1980) Oct-tree and their use in representing three-dimensional objects. Comput Graphics Image Process 14(3):249–270Kajiya J T (1982) Ray Tracing Parametric Patches. SIGGRAPH Comput Graph 16(3):245–254van Keulen F, Haftka R T, Kim N (2005) Review of options for structural design sensitivity analysis. Part I: linear systems. Comput Methods Appl Mech Eng 194(30-33):3213–3243Kibsgaard S (1992) Sensitivity analysis-the basis for optimization. Int J Numer Methods Eng 34(3):901–932Kikuchi N, Chung K Y, Torigaki T, Taylor J E (1986) Adaptive finite element methods for shape optimization of linearly elastic structures. Comput Methods Appl Mech Eng 57(1):67–89Kim N H, Chang Y (2005) Eulerian shape design sensitivity analysis and optimization with a fixed grid. Comput Methods Appl Mech Eng 194(30–33):3291–3314Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: Accurately integrating discontinuous functions in 3d. Comput Methods Appl Mech Eng 306(1):406–426Kunisch K, Peichl G (1996) Numerical gradients for shape optimization based on embedding domain techniques. Comput Optim 18:95–114Li K, Qian X (2011) Isogeometric analysis and shape optimization via boundary integral. Computer-Aided Design 43(11):1427–1437Lian H, Kerfriden P, Bordas S P A (2016) Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int J Numer Methods Eng 106 (12):972–1017Liu L, Zhang Y, Hughes T J R, Scott M A, Sederberg T W (2014) Volumetric T-spline Construction using Boolean Operations. Eng Comput 30(4):425–439Marco O, Sevilla R, Zhang Y, Ródenas J J, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103:445–468Marco O, Ródenas J J, Fuenmayor FJ, Tur M (2017a) An extension of shape sensitivity analysis to an immersed boundary method based on cartesian grids. Computational Mechanics SubmittedMarco O, Ródenas J J, Navarro-Jiménez JM, Tur M (2017b) Robust h-adaptive meshing strategy for arbitrary cad geometries in a cartesian grid framework. Computers & Structures SubmittedMeagher D (1980) Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer. Tech. Rep. IPL-TR-80-11 I, Rensselaer Polytechnic InstituteMoita J S, Infante J, Mota C M, Mota C A (2000) Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput Struct 76(1–3):407–420Nadal E (2014) Cartesian Grid FEM (cgFEM): High Performance h-adaptive FE Analysis with Efficient Error Control. Application to Structural Shape Optimization. PhD Thesis. Universitat Politècnica de ValènciaNadal E, Ródenas J J, Albelda J, Tur M, Tarancón J E, Fuenmayor F J (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal 2013:1–19Najafi A R, Safdari M, Tortorelli D A, Geubelle P H (2015) A gradient-based shape optimization scheme using an interface-enriched generalized FEM. Comput Methods Appl Mech Eng 296:1–17Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T (2015) Isogeometric analysis: An overview and computer implementation aspects. Math Comput Simul 117:89–116Nishita T, Sederberg TW, Kakimoto M (1990) Ray Tracing Trimmed Rational Surface Patches. SIGGRAPH Comput Graph 24(4):337–345Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer-Verlag, New YorkPandey P C, Bakshi P (1999) Analytical response sensitivity computation using hybrid finite elements. Comput Struct 71(5):525–534Parvizian J, Düster A, Rank E (2007) Finite Cell Method: h- and p- Extension for Embedded Domain Methods in Solid Mechanics. Comput Mech 41(1):121–133Peskin C S (1977) Numerical Analysis of Blood Flow in the Heart. J Comput Phys 25:220–252Poldneff M J, Rai I S, Arora J S (1993) Implementation of design sensitivity analysis for nonlinear structures. AIAA J 31(11):2137–2142Powell M (1983) Variable metric methods for constrained optimization. In: Bachem A, Grotschel M, Korte B (eds) Mathematical Programming: The State of the Art, Springer, Berlin, Heidelberg, pp 288–311Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199(29–32):2059–2071Riehl S, Steinmann P (2014) An integrated approach to shape optimization and mesh adaptivity based on material residual forces. Comput Methods Appl Mech Eng 278:640–663Riehl S, Steinmann P (2016) On structural shape optimization using an embedding domain discretization technique. Int J Numer Methods Eng 109(9):1315–1343Ródenas J J, Tarancón J E, Albelda J, Roda A, Fuenmayor F J (2005) Hierarchical Properties in Elements Obtained by Subdivision: a Hierarquical h-adaptivity Program. In: Díez P, Wiberg N E (eds) Adaptive Modeling and Simulation, p 2005Ródenas J J, Corral C, Albelda J, Mas J, Adam C (2007a) Nested domain decomposition direct and iterative solvers based on a hierarchical h-adaptive finite element code. In: Runesson K, Díez P (eds) Adaptive Modeling and Simulation 2007, Internacional Center for Numerical Methods in Engineering (CIMNE), pp 206–209Ródenas J J, Tur M, Fuenmayor F J, Vercher A (2007b) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727Ródenas J J, Bugeda G, Albelda J, Oñate E (2011) On the need for the use of error-controlled finite element analyses in structural shape optimization processes. Int J Numer Methods Eng 87(11):1105–1126Schillinger D, Ruess M (2015) The finite cell method: A review in the context of higher-order structural analysis of cad and image-based geometric models. Arch Comput Meth Eng 22(3):391– 455Sevilla R, Fernández-Méndez S, Huerta A (2011a) 3D-NURBS-enhanced Finite Element Method (NEFEM). Int J Numer Methods Eng 88(2):103–125Sevilla R, Fernández-Méndez S, Huerta A (2011b) Comparison of High-order Curved Finite Elements. Int J Numer Methods Eng 87(8):719–734Sevilla R, Fernández-Méndez S, Huerta A (2011c) NURBS-enhanced Finite Element Method (NEFEM): A Seamless Bridge Between CAD and FEM. Arch Comput Meth Eng 18(4):441–484Sweeney M, Bartels R (1986) Ray tracing free-form b-spline surfaces. IEEE Comput Graph Appl 6(2):41–49Toth D L (1985) On Ray Tracing Parametric Surfaces. SIGGRAPH Comput Graph 19(3):171–179Tur M, Albelda J, Nadal E, Ródenas J J (2014) Imposing dirichlet boundary conditions in hierarchical cartesian meshes by means of stabilized lagrange multipliers. Int J Numer Methods Eng 98(6):399–417Tur M, Albelda J, Marco O, Ródenas J J (2015) Stabilized Method to Impose Dirichlet Boundary Conditions using a Smooth Stress Field. Comput Methods Appl Mech Eng 296:352–375Yao T, Choi KK (1989) 3-d shape optimal design and automatic finite element regridding. Int J Numer Methods Eng 28(2):369–384Zhang L, Gerstenberger A, Wang X, Liu W K (2004) Immersed Finite Element Method. Comput Methods Appl Mech Eng 293(21):2051–2067Zhang Y, Wang W, Hughes T J R (2013) Conformal Solid T-spline Construction from Boundary T-spline Representations. Comput Mech 6(51):1051–1059Zienkiewicz O C, Zhu J Z (1987) A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis. Int J Numer Methods Eng 24(2):337–35

    Consensus Conference on Clinical Management of pediatric Atopic Dermatitis

    Full text link

    Error estimation and h-adaptive refinement in the analysis of natural frequencies

    No full text
    This paper deals with the estimation of the discretization error and the definition of an optimum h-adaptive process in the finite element analysis of natural frequencies and modes. Consistent and lumped mass matrices are considered. In the first case, the discretization error essentially proceeds from the stiffness modelization, so it is possible to apply the same error estimators than those considered in static problems. On the other hand, the error associated with the modelization of the inertial properties must be taken into account if lumped mass matrices are used. As far as h-adaptivity is concerned, it is usually interesting to obtain meshes with a specified error for each mode. However, traditional criteria for static problems consider only one load case. Defining the optimum mesh as the one that gets the desired error with the minimum number of elements, a method is proposed for the h-adaptive process taking into account a set of natural modes simultaneously. The proposed methods have been validated by applying them to bi-dimensional test problems. © 2001 Elsevier Science B.V. All rights reserved

    Multidimensional acoustic modelling of catalytic converters

    Full text link
    In this work the finite element method is applied to predict the acoustic behaviour of catalytic converters. Two different modelling techniques are considered and compared for the monolith: (1) First, the procedure described in previous works, in which the wave propagation in the monolithic catalytic converter is assumed to be analogous to the propagation in an equivalent fluid, characterized by its complex and frequency dependent impedance and wave number. In this case, the finite element model leads to the calculation of the three-dimensional acoustic field inside the complete catalytic converter, including the inlet/outlet ducts and the monolith. Therefore, this first approach allows the consideration of higher order modes inside all the catalyst components; (2) On the other hand, a coupling technique is applied in which the monolith is replaced by a plane wave transfer matrix, that is, only one-dimensional acoustic behaviour is allowed for the capillary ducts, while three-dimensional acoustic waves can still be present in the inlet/outlet ducts. The results provided by both approaches are compared with experimental measurements for a selected configuration, showing that the latter technique exhibits a better agreement. In addition, the effect of several parameters on the acoustic behaviour of the catalyst is investigated

    Sound attenuation in partially-filled perforated dissipative mufflers with extended inlet/outlet

    No full text
    The current study considers the acoustic characteristics of partially-filled perforated dissipative circular mufflers with extended inlet/outlet. In addition to the finite element method (FEM), a two-dimensional (2-D) axisymmetric analytical approach is developed that matches the acoustic field across the discontinuities by applying the continuity conditions of the acoustic pressure and velocity. The complex characteristic impedance, wavenumber and perforation impedance are taken into account to evaluate the axial wavenumber in the absorbing fiber and in the central perforated pipe. In addition, experimental work is considered for validation purposes. Several effects regarding the extended inlet/outlet ducts and the fiber properties are presented and discussed

    Aminoacidophathies, Disorders of

    No full text
    corecore